in Combinatory edited by
517 views
3 votes
3 votes

Find the generating function for the sequence $\left \{ a_n  \right \} where  $

$a_n = \Large \binom{10}{n+1} $ for n = 0,1,2,….

Sol. 

$\Large \binom{10}{1} + \binom{10}{2}x + \binom{10}{3}x^2 + \binom{10}{4} x^3 + .... + \binom{10}{10}x^{9}$ 

multiplying and dividing above equation by x,

$\Large \frac{1}{x} (\binom{10}{1}x + \binom{10}{2}x^2 + \binom{10}{3}x^3 + \binom{10}{4} x^4 + .... + \binom{10}{10}x^{10})$ 

adding and subtracting $\large \frac{1}{x}$,

$\Large \frac{1}{x} – \frac{1}{x} +  \frac{1}{x} (\binom{10}{1}x + \binom{10}{2}x^2 + \binom{10}{3}x^3 + \binom{10}{4} x^4 + .... + \binom{10}{10}x^{10})$

$\Large – \frac{1}{x} +  \frac{1}{x} (1 + \binom{10}{1}x + \binom{10}{2}x^2 + \binom{10}{3}x^3 + \binom{10}{4} x^4 + .... + \binom{10}{10}x^{10})$

Using binomial theorem,

$\Large – \frac{1}{x} +  \frac{1}{x} ( 1+x)^{10}$

$\Large \color{red}{   \frac{( 1+x )^{10} – 1}{x} }$


Please verify 

in Combinatory edited by
517 views

2 Comments

yes, right
0
0

 thanks for confirming :)

0
0

1 Answer

0 votes
0 votes
Yes,you are absolutely correct,I just want to differ on the part of getting to the ans from the second step which I found a little easier.

multiplying and dividing above equation by x,we get:-

$\frac{1}{x} (\begin{pmatrix} 10\\ 1 \end{pmatrix}x^{1}1^{10-1} + \begin{pmatrix} 10\\ 2 \end{pmatrix}x^{2}1^{10-2} + \begin{pmatrix} 10\\ 3 \end{pmatrix}x^{3}1^{10-3} ................... \begin{pmatrix} 10\\ n \end{pmatrix}x^{n}1^{10-n})$

Now,let's add and subtract 1 inside the braces as follows:-

$\frac{1}{x} (1+\begin{pmatrix} 10\\ 1 \end{pmatrix}x^{1}1^{10-1} + \begin{pmatrix} 10\\ 2 \end{pmatrix}x^{2}1^{10-2} + \begin{pmatrix} 10\\ 3 \end{pmatrix}x^{3}1^{10-3} ................... \begin{pmatrix} 10\\ n \end{pmatrix}x^{n}1^{10-n}-1)$

Now,a binomial pattern can be observed to be emerging from the above manipulation.Let's make it a full formed binomial expression by replacing first 1 as below:

$\frac{1}{x} (\begin{pmatrix} 10\\ 0 \end{pmatrix}x^{0}1^{10-0}+\begin{pmatrix} 10\\ 1 \end{pmatrix}x^{1}1^{10-1} + \begin{pmatrix} 10\\ 2 \end{pmatrix}x^{2}1^{10-2} + \begin{pmatrix} 10\\ 3 \end{pmatrix}x^{3}1^{10-3} ....... \begin{pmatrix} 10\\ n \end{pmatrix}x^{n}1^{10-n}-1)$

The above binomial expansion can be rewritten as:

$\frac{1}{x} ((1+x)^{10}-1 )$

The second step is exactly same as yours,just doing off with the fractions and keeping all the 1's in the expression just made it a little easier to follow for me,I hope it helps others too. :)

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true