in Quantitative Aptitude edited by
983 views
3 votes
3 votes

The number of trailing zeros in $100!$ is

  1. $21$
  2. $23$
  3. $24$
  4. $25$
in Quantitative Aptitude edited by
983 views

2 Comments

$\left \lfloor \dfrac{100}{5} \right \rfloor = 20$

$\left \lfloor \dfrac{20}{5} \right \rfloor = 4$

$\left \lfloor \dfrac{4}{5} \right \rfloor = 0$

$\therefore 20+4+0 = 24$
1
1
0
0

5 Answers

1 vote
1 vote
To create 1 Zero  in 100! we need 5 and 2  so we have to check highest power of 2 and 5 in 100! , so follow the procedure below:

Finding highest power of 2 in 100!

Integer solution  of 100/2  + 100/2^2 + 100/ 2^3 + 100/2^4 + 100/2^5 +100/2^6 = 97
So highest power of 2 in  100!  Is 97

Now highest power of 5 in 100!
Integer solution of 100/5 + 100/5^2 = 20+4 =24
So in 100!  There  are 97  2's  and 24  5's
So we have less number of 5's   so no of fives will decide number  of trailing zeros in 100!   So Ans  is option C  that is 24
0 votes
0 votes
Answer is (C)
Multiple of 5 +Multiple of 25=20+4=24
0 votes
0 votes

Answer will be C

0 votes
0 votes
Let $f(n)$ give the number of trailing zeros in the base ten representation of $n!$ .

Then $f(n) = \left \lfloor \dfrac{n}{5} \right \rfloor + \left \lfloor \dfrac{n}{5^2} \right \rfloor + \left \lfloor \dfrac{n}{5^3} \right \rfloor+............+\left \lfloor \dfrac{n}{5^k} \right \rfloor$

where, $\left \lfloor \dfrac{n}{5^k} \right \rfloor = 0$

$f(n) = \left \lfloor \dfrac{100}{5} \right \rfloor + \left \lfloor \dfrac{100}{5^2} \right \rfloor + \left \lfloor \dfrac{100}{5^3} \right \rfloor$

$f(n) = \left \lfloor \dfrac{100}{5} \right \rfloor + \left \lfloor \dfrac{100}{25} \right \rfloor + \left \lfloor \dfrac{100}{125} \right \rfloor$

$f(n) = 20 + 4 + 0$

$f(n) = 24$
Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true