in Linear Algebra recategorized by
505 views
1 vote
1 vote

The value of $\begin{vmatrix} 1+a & 1 & 1 & 1 \\ 1 & 1+b & 1 & 1 \\ 1 & 1 & 1+c & 1 \\ 1 & 1 & 1 & 1+d \end{vmatrix}$   is

  1. $abcd(1+\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d})$
  2. $abcd(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d})$
  3. $1+\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}$
  4. None of these
in Linear Algebra recategorized by
by
505 views

2 Answers

2 votes
2 votes
$\begin{vmatrix} 1+a & 1 & 1 & 1\\ 1 & 1+b & 1&1 \\ 1 &1 & 1+c &1 \\ 1 & 1& 1& 1+d \end{vmatrix}$

$=\begin{vmatrix} 1+a & 1+0 & 1+0 & 1+0\\ 1 & 1+b & 1&1 \\ 1 &1 & 1+c &1 \\ 1 & 1& 1& 1+d \end{vmatrix}$

Splitting the 1st row

$=\begin{vmatrix} 1 & 1 & 1 & 1\\ 1 & 1+b & 1&1 \\ 1 &1 & 1+c &1 \\ 1 & 1& 1& 1+d \end{vmatrix}$$+\begin{vmatrix} a & 0 & 0 & 0\\ 1 & 1+b & 1&1 \\ 1 &1 & 1+c &1 \\ 1 & 1& 1& 1+d \end{vmatrix}$

$=\begin{vmatrix} 1 & 1 & 1 & 1\\ 1+0 & 1+b & 1+0&1+0 \\ 1 &1 & 1+c &1 \\ 1 & 1& 1& 1+d \end{vmatrix}$$+\begin{vmatrix} a & 0 & 0 & 0\\ 1 & 1+b & 1&1 \\ 1 &1 & 1+c &1 \\ 1 & 1& 1& 1+d \end{vmatrix}$

Splitting the 2nd Row of 1st determinant

$=\begin{vmatrix} 1 & 1 & 1 & 1\\ 1 & 1 & 1&1 \\ 1 &1 & 1+c &1 \\ 1 & 1& 1& 1+d \end{vmatrix}$$+\begin{vmatrix} 1 & 1 & 1 & 1\\ 0 & b & 0&0 \\ 1 &1 & 1+c &1 \\ 1 & 1& 1& 1+d \end{vmatrix}$$+\begin{vmatrix} a & 0 & 0 & 0\\ 1 & 1+b & 1&1 \\ 1 &1 & 1+c &1 \\ 1 & 1& 1& 1+d \end{vmatrix}$

$=0$$+\begin{vmatrix} 1 & 1 & 1 & 1\\ 0 & b & 0&0 \\ 1+0 &1+0 & 1+c &1+0 \\ 1 & 1& 1& 1+d \end{vmatrix}$$+\begin{vmatrix} a & 0 & 0 & 0\\ 1 & 1+b & 1&1 \\ 1 &1 & 1+c &1 \\ 1 & 1& 1& 1+d \end{vmatrix}$

Splitting the 3rd Row of 1st determinant

$=\begin{vmatrix} 1 & 1 & 1 & 1\\ 0 & b & 0&0 \\ 1&1 & 1 &1 \\ 1 & 1& 1& 1+d \end{vmatrix}$$+\begin{vmatrix} 1 & 1 & 1 & 1\\ 0 & b & 0&0 \\ 0 &0 & c &0 \\ 1 & 1& 1& 1+d \end{vmatrix}$$+\begin{vmatrix} a & 0 & 0 & 0\\ 1 & 1+b & 1&1 \\ 1 &1 & 1+c &1 \\ 1 & 1& 1& 1+d \end{vmatrix}$

$=0$$+\begin{vmatrix} 1 & 1 & 1 & 1\\ 0 & b & 0&0 \\ 0 &0 & c &0 \\ 1+0 & 1+0& 1+0& 1+d \end{vmatrix}$$+\begin{vmatrix} a & 0 & 0 & 0\\ 1 & 1+b & 1&1 \\ 1 &1 & 1+c &1 \\ 1 & 1& 1& 1+d \end{vmatrix}$

Splitting the 4th Row of 1st determinant

$=\begin{vmatrix} 1 & 1 & 1 & 1\\ 0 & b & 0&0 \\ 0 &0 & c &0 \\ 1 & 1& 1& 1 \end{vmatrix}$$+\begin{vmatrix} 1 & 1 & 1 & 1\\ 0 & b & 0&0 \\ 0 &0 & c &0 \\ 0 & 0& 0& d \end{vmatrix}$$+\begin{vmatrix} a & 0 & 0 & 0\\ 1 & 1+b & 1&1 \\ 1 &1 & 1+c &1 \\ 1 & 1& 1& 1+d \end{vmatrix}$

$=0+bcd$$+\begin{vmatrix} a & 0 & 0 & 0\\ 1+0 & 1+b & 1+0&1+0 \\ 1 &1 & 1+c &1 \\ 1 & 1& 1& 1+d \end{vmatrix}$

Splitting the 2nd Row of determinant

$=bcd$$+\begin{vmatrix} a & 0 & 0 & 0\\ 1 & 1 & 1&1 \\ 1+0 &1+0 & 1+c &1+0 \\ 1 & 1& 1& 1+d \end{vmatrix}$$+\begin{vmatrix} a & 0 & 0 & 0\\ 0 & b & 0&0 \\ 1 &1 & 1+c &1 \\ 1 & 1& 1& 1+d \end{vmatrix}$

Splitting the 3rd Row of 1st determinant

$=bcd$$+\begin{vmatrix} a & 0 & 0 & 0\\ 1 & 1 & 1&1 \\ 1 &1 & 1 &1 \\ 1 & 1& 1& 1+d \end{vmatrix}+\begin{vmatrix} a & 0 & 0 & 0\\ 1 & 1 & 1&1 \\ 0 &0 & c &0 \\ 1 & 1& 1& 1+d \end{vmatrix}$$+\begin{vmatrix} a & 0 & 0 & 0\\ 0 & b & 0&0 \\ 1 &1 & 1+c &1 \\ 1 & 1& 1& 1+d \end{vmatrix}$

$=bcd$$+0+\begin{vmatrix} a & 0 & 0 & 0\\ 1 & 1 & 1&1 \\ 0 &0 & c &0 \\ 1+0 & 1+0& 1+0& 1+d \end{vmatrix}$$+\begin{vmatrix} a & 0 & 0 & 0\\ 0 & b & 0&0 \\ 1 &1 & 1+c &1 \\ 1 & 1& 1& 1+d \end{vmatrix}$

Splitting the 4th Row of 1st determinant

$=bcd$$+\begin{vmatrix} a & 0 & 0 & 0\\ 1 & 1 & 1&1 \\ 0 &0 & c &0 \\ 1 & 1& 1& 1 \end{vmatrix}$$+\begin{vmatrix} a & 0 & 0 & 0\\ 1 & 1 & 1&1 \\ 0 &0 & c &0 \\ 0 & 0& 0& d \end{vmatrix}$$+\begin{vmatrix} a & 0 & 0 & 0\\ 0 & b & 0&0 \\ 1 &1 & 1+c &1 \\ 1 & 1& 1& 1+d \end{vmatrix}$

$=bcd+0+acd$$+\begin{vmatrix} a & 0 & 0 & 0\\ 0 & b & 0&0 \\ 1+0 &1+0 & 1+c &1+0 \\ 1 & 1& 1& 1+d \end{vmatrix}$

Splitting the 3rd Row of 1st determinant

$=bcd+acd$$+\begin{vmatrix} a & 0 & 0 & 0\\ 0 & b & 0&0 \\ 1 &1 & 1 &1 \\ 1+0 & 1+0& 1+0& 1+d \end{vmatrix}$$+\begin{vmatrix} a & 0 & 0 & 0\\ 0 & b & 0&0 \\ 0 &0 & c &0 \\ 1 & 1& 1& 1+d \end{vmatrix}$

Splitting the 4th Row of 1st determinant

$=bcd+acd$$+\begin{vmatrix} a & 0 & 0 & 0\\ 0 & b & 0&0 \\ 1 &1 & 1 &1 \\ 1 & 1& 1& 1 \end{vmatrix}$$+\begin{vmatrix} a & 0 & 0 & 0\\ 0 & b & 0&0 \\ 1 &1 & 1 &1 \\ 0 & 0& 0& d \end{vmatrix}$$+\begin{vmatrix} a & 0 & 0 & 0\\ 0 & b & 0&0 \\ 0 &0 & c &0 \\ 1 & 1& 1& 1+d \end{vmatrix}$

$=bcd+acd+0+abd$$+\begin{vmatrix} a & 0 & 0 & 0\\ 0 & b & 0&0 \\ 0 &0 & c &0 \\ 1+0 & 1+0& 1+0& 1+d \end{vmatrix}$

Splitting the 4th Row of  determinant

$=bcd+acd+abd$$+\begin{vmatrix} a & 0 & 0 & 0\\ 0 & b & 0&0 \\ 0 &0 & c &0 \\ 1 & 1& 1& 1 \end{vmatrix}$$+\begin{vmatrix} a & 0 & 0 & 0\\ 0 & b & 0&0 \\ 0 &0 & c &0 \\ 0 & 0& 0& d \end{vmatrix}$

$=bcd+acd+abd+abc+abcd$

$=abcd\left ( \frac{1}{a} + \frac{1}{b} +\frac{1}{c} +\frac{1}{d}+1 \right )$

 

$\therefore$ Option $A.$ is the correct answer.
1 vote
1 vote

Solution:

This problem can be solved using the transformation rules of the matrix.

by

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true