search
Log In

Web Page

Syllabus: Matrices, determinants, System of linear equations, Eigenvalues and eigenvectors, LU decomposition.

$$\scriptsize{\overset{{\large{\textbf{Mark Distribution in Previous GATE}}}}{\begin{array}{|c|c|c|c|c|c|c|c|}\hline
\textbf{Year}&\textbf{2021-1}&\textbf{2021-2}&\textbf{2020}&\textbf{2019}&\textbf{2018}&\textbf{2017-1}&\textbf{2017-2}&\textbf{2016-1}&\textbf{2016-2}&\textbf{Minimum}&\textbf{Average}&\textbf{Maximum}
\\\hline\textbf{1 Mark Count}&0&1&0&1&1&1&1&1&2&0&0.88&2
\\\hline\textbf{2 Marks Count}&1&1&1&1&1&2&1&0&0&0&0.88&2
\\\hline\textbf{Total Marks}&2&3&2&3&3&5&3&1&2&\bf{1}&\bf{2.66}&\bf{5}\\\hline
\end{array}}}$$

Recent questions in Linear Algebra

4 votes
3 answers
1
Suppose that $P$ is a $4 \times 5$ matrix such that every solution of the equation $\text{Px=0}$ is a scalar multiple of $\begin{bmatrix} 2 & 5 & 4 &3 & 1 \end{bmatrix}^T$. The rank of $P$ is __________
asked Feb 18 in Linear Algebra Arjun 823 views
1 vote
2 answers
2
For a statement $S$ in a program, in the context of liveness analysis, the following sets are defined: $\text{USE(S)}$ : the set of variables used in $S$ $\text{IN(S)}$ : the set of variables that are live at the entry of $S$ $\text{OUT(S)}$ : the set of variables that are live at the exit ... $) }\cup \text{ OUT ($S_2$)}$ $\text{OUT ($S_1$)}$ = $\text{USE ($S_1$)} \cup \text{IN ($S_2$)}$
asked Feb 18 in Linear Algebra Arjun 377 views
1 vote
2 answers
3
Consider the following matrix.$\begin{pmatrix} 0 & 1 & 1 & 1\\ 1& 0& 1 & 1\\ 1& 1 & 0 & 1 \\1 & 1 & 1 & 0 \end{pmatrix}$The largest eigenvalue of the above matrix is __________.
asked Feb 18 in Linear Algebra Arjun 641 views
1 vote
2 answers
4
Consider the matrix $A=\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. Find $A^n,$ in terms of $n,$ for $n\geq2.$
asked Jan 29 in Linear Algebra soujanyareddy13 96 views
0 votes
2 answers
5
The matrices $\begin{bmatrix} \cos\theta &-\sin \theta \\ \sin \theta & cos \theta \end{bmatrix}$ and $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ commute under the multiplication if $a=b \text{(or)} \theta =n\pi, \: n$ is an integer always never if $a\cos \theta \neq b\sin \theta$
asked Apr 2, 2020 in Linear Algebra Lakshman Patel RJIT 177 views
0 votes
1 answer
6
0 votes
1 answer
7
Consider three vectors $x=\begin{bmatrix}1\\2 \end{bmatrix}, y=\begin{bmatrix}4\\8 \end{bmatrix},z=\begin{bmatrix}3\\1 \end{bmatrix}$. Which of the folowing statements is true $x$ and $y$ are linearly independent $x$ and $y$ are linearly dependent $x$ and $z$ are linearly dependent $y$ and $z$ are linearly dependent
asked Apr 2, 2020 in Linear Algebra Lakshman Patel RJIT 121 views
0 votes
0 answers
8
If product of matrix $A=\begin{bmatrix}\cos^{2}\theta &\cos \theta \sin \theta \\ \cos \theta \sin \theta &\sin ^{2} \theta& \end{bmatrix}$ and $B=\begin{bmatrix}\cos^{2}\phi &\cos \phi \sin \phi \\ \cos \phi \sin \phi &\sin ^{2} \phi& \end{bmatrix}$ is a ... and $\phi$ differ by an odd multiple of $\pi$ even multiple of $\pi$ odd multiple of $\dfrac{\pi}{2}$ even multiple of $\dfrac{\pi}{2}$
asked Apr 2, 2020 in Linear Algebra Lakshman Patel RJIT 132 views
0 votes
1 answer
9
$M$ is a square matrix of order $’n’$ and its determinant value is $5.$ If all the elements of $M$ are multiplied by $2,$ its determinant value becomes $40.$ The value of $’n’$ is $2$ $3$ $5$ $4$
asked Apr 1, 2020 in Linear Algebra Lakshman Patel RJIT 171 views
0 votes
2 answers
10
0 votes
1 answer
11
0 votes
1 answer
12
0 votes
2 answers
13
If $A$ and $B$ are square matrices of size $n\times n$, then which of the following statements is not true? $\det(AB)=\det(A) \det(B)$ $\det(kA)=k^n \det(A)$ $\det(A+B)=\det(A)+\det(B)$ $\det(A^T)=1/\det(A^{-1})$
asked Mar 31, 2020 in Linear Algebra Lakshman Patel RJIT 1.5k views
1 vote
2 answers
15
0 votes
1 answer
16
Consider two matrices $M_1$ and $M_2$ with $M_1^*M_2=0$ and $M_1$ is non singular. Then which of the following is true? $M_2$ is non singular $M_2$ is null matrix $M_2$ is the identity matrix $M_2$ is transpose of $M_1$
asked Mar 30, 2020 in Linear Algebra Lakshman Patel RJIT 208 views
1 vote
2 answers
17
$AVA=A$ is called : Identity law De Morgan’s law Idempotent law Complement law
asked Mar 26, 2020 in Linear Algebra jothee 127 views
0 votes
0 answers
18
How many corner does a cube have in 4 dimensions? How many 3D faces? Now by observation we can tell that, an n-dimensional cube has $2^n$ corners. 1D cube which is a line have $2^1$ corners 2D cube which is a square have $2^2$ corners 3D cube have $2^3$ corners ... 8 three-dimension cubes. but this is the question i'm not able to answer. How every N-cube have $|2n|$ cubes of dimension (N-1)?
asked Feb 26, 2020 in Linear Algebra Mk Utkarsh 265 views
5 votes
2 answers
19
Let $A$ and $B$ be two $n \times n$ matrices over real numbers. Let rank($M$) and $\text{det}(M)$ denote the rank and determinant of a matrix $M$, respectively. Consider the following statements. $\text{rank}(AB) = \text{rank }(A) \text{rank }(B)$ ... Which of the above statements are TRUE? I and II only I and IV only II and III only III and IV only
asked Feb 12, 2020 in Linear Algebra Arjun 3.3k views
0 votes
1 answer
20
The hour needle of a clock is malfunctioning and travels in the anti-clockwise direction, i.e., opposite to the usual direction, at the same speed it would have if it was working correctly. The minute needle is working correctly. Suppose the two needles show the correct time at $12$ noon, thus ... ? $\dfrac{10}{11}$ hour $\dfrac{11}{12}$ hour $\dfrac{12}{13}$ hour $\dfrac{19}{22}$ hour One hour
asked Feb 11, 2020 in Linear Algebra Lakshman Patel RJIT 187 views
...