in Quantitative Aptitude retagged by
5,522 views
10 votes
10 votes

The figure below shows an annular ring with outer and inner as $b$ and $a$, respectively. The annular space has been painted in the form of blue colour circles touching the outer and inner periphery of annular space. If maximum $n$ number of circles can be painted, then the unpainted area available in annular space is _____.

 

  1. $\pi [(b^{2}-a^{2})-\frac{n}{4}(b-a)^{2}]$
  2. $\pi [(b^{2}-a^{2})-n(b-a)^{2}]$
  3. $\pi [(b^{2}-a^{2})+\frac{n}{4}(b-a)^{2}]$
  4. $\pi [(b^{2}-a^{2})+n(b-a)^{2}]$
in Quantitative Aptitude retagged by
by
5.5k views

4 Comments

The real example of Naam bade, darshan khote, easy question.

1
1

@mohit7891 really bro it is very easy but not able to decode it during test

1
1
tx
0
0

2 Answers

13 votes
13 votes
Best answer

Answer is Option (A)

We need to find the area of the ring first.

Area of Ring $=$ Area of Outer Circle $-$ Area of Inner Circle       

$\qquad \qquad \quad =\pi b^2 - \pi a^2 = \pi (b^2-a^2)$  

Now From this ring area we have to subtract the small '$n$' circles

Area of $n$ Circles $ = (\pi d^2/4) \ast n = (\pi (b-a)^2 /4)\ast n$

The Required Unpainted Area $=$  Ring Area $-$ Area of Small  '$n$' such Circles

$\qquad \qquad \quad =\pi (b^2 - a^2) - (\pi d^2/4)*n$

$\qquad \qquad \quad = \pi [(b^2-a^2)- n/4(b-a)^2 ]$             

edited by
5 votes
5 votes

Answer A

Annular space = π($b^{2}$ - $a^{2}$)

n blue color circle space =  n[π($(\frac{b-a}{2})^{^{2}}$)]   { radious = $\frac{b-a}{2}$ }

then Unpented area in annular spase = π($b^{2}$ - $a^{2}$) - πn($(\frac{b-a}{2})^{^{2}}$)

= π[($b^{2}$ - $a^{2}$) - $\frac{n}{4}$$(b-a)^{2}$]

 

Answer:

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true