in Linear Algebra retagged by
10,149 views
23 votes
23 votes
Consider a matrix $A= uv^T$ where $u=\begin{pmatrix}1 \\ 2 \end{pmatrix} , v = \begin{pmatrix}1 \\1 \end{pmatrix}$. Note that $v^T$ denotes the transpose of $v$. The largest eigenvalue of $A$ is ____
in Linear Algebra retagged by
by
10.1k views

4 Comments

Eigen values x=0,3 but maximum  value is 3
0
0
largest eigen value is 3.
5
5
Q)

$$

\begin{aligned}

& A=u v^{\top} \text { (given) } \quad U=\left[\begin{array}{l}

1 \\

2

\end{array}\right] \quad V=\left[\begin{array}{l}

1 \\

1

\end{array}\right] \\

& A=\left[\begin{array}{l}

1 \\

2

\end{array}\right]_{2 \times 1}\left[\begin{array}{ll}

1 & 1

\end{array}\right]_{1 \times 2}=\left[\begin{array}{ll}

1 & 1 \\

2 & 2

\end{array}\right]_{2 \times 2}

\end{aligned}

$$

Now, $|A-\lambda I|=0$

$$

\begin{gathered}

\left|\begin{array}{cc}

1-\lambda & 1 \\

2 & 2-\lambda

\end{array}\right|=0 \\

(1-\lambda)(2-\lambda)-2=0 \\

\not2-\lambda-2 \lambda+\lambda^2-\not 2=0 \\

\lambda^2-3 \lambda=0 \\

\lambda=3 ; \lambda=0

\end{gathered}

$$

Langest eigevalue is $\lambda=3$
0
0

6 Answers

30 votes
30 votes
Best answer
$u = \begin{bmatrix} 1\\ 2 \end{bmatrix}$

$v^T= \begin{bmatrix} 1 & 1 \end{bmatrix}$

$A= uv^T$

$A=  \begin{bmatrix} 1\\ 2 \end{bmatrix}  \begin{bmatrix} 1 & 1 \end{bmatrix}$

$\quad =\begin{bmatrix} 1 &1 \\ 2 & 2 \end{bmatrix}$

$A - \lambda I = 0$

$\implies \begin{bmatrix} 1 - \lambda &1 \\ 2 & 2- \lambda \end{bmatrix} = 0$

$\implies  (1- \lambda) (2- \lambda) - 2 =0$

$\implies\lambda ^{2} - 3\lambda = 0$

$\implies \lambda = 0, 3$

So, maximum is $3$.
edited by
8 votes
8 votes
after multiplying u and v Transpose
A=  1   1

      2    2

that means sum of eigen values will be 3 and their product will be 0
so the two eigen values will be 3 and 0

 

Answer will be 3
8 votes
8 votes

$Theorem$: If $\lambda$ is a non-zero eigen value of matrix $AB$, then same $\lambda$ is also an eigen value of matrix $BA$

$proof$:  

Let $\lambda \neq 0$ be a  eigen value of matrix $AB$

$\begin{align*} (AB)v &= \lambda v\\ B(AB)v&=B(\lambda v) \\ (BA)Bv &=\lambda (Bv) \end{align*}$

The point is that matrices $AB$ and $BA$ share non-zero eigen values


The dimension of $u$ and $v$ is $2$ x $1$.

The dimension of $A = uv^{T}$ is $2$ x $2$ and hence there will be two eigen values of $uv^{T}$ (repeating or non repeating)

The dimension of $v^{T}u$ is $1$ x $1$ 

$v^{T}u$ is dot product of $v$ and $u$ $ = 3$ and this implies eigen value of $v^{T}u$ is 3.

Since non-zero eigen values are shared by $uv^{T}$ and  $v^{T}u$

So eigen values of $uv^{T}$ are $3, 0$.

Largest of the eigen value is 3 which is nothing but dot product of $u$ and $v$

2 votes
2 votes
$u=\begin{bmatrix} 1\\ 2 \end{bmatrix} $  $v^{T}= \begin{bmatrix} 1 & 1 \end{bmatrix}$

$A= uv^{T}$

A= $\begin{bmatrix} 1 &1 \\ 2& 2 \end{bmatrix}$

Now you get equation

$(\lambda-1)(\lambda-2)- 2=0$

$\lambda ^{2}- 3\lambda=0$

$\lambda(\lambda -3)=0$

we get $\lambda =0,3$

answer will be $3$
edited by

1 comment

sir, last entry of A, should be 2 but not 4
0
0
Answer:

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true