in Probability retagged by
2,925 views
25 votes
25 votes

Three dice are rolled independently. What is the probability that the highest and the lowest value differ by $4$?  

  1. $\left(\dfrac{1}{3}\right)$    
  2. $\left(\dfrac{1}{6}\right)$  
  3. $\left(\dfrac{1}{9}\right)$  
  4. $\left(\dfrac{5}{18}\right)$  
  5. $\left(\dfrac{2}{9}\right)$
in Probability retagged by
by
2.9k views

3 Comments

2/9 is correct.
1
1

Its a beautiful question and indeed a beautiful solution @aritra nayak

0
0
When should we count the permutations, and when not count them?
0
0

7 Answers

0 votes
0 votes
difference highest and lowest is 4.
1 (1,2,3,4,5) 5
+
2(2,3,4,5,6)6
=(3!* 1.5.1 + 3!*1.5.1)/6.6.6
=2.6.5/6.6.6
=10/36=5/18
0 votes
0 votes

Sample space be $S = \{(d_1, d_2, d_3) \ | \ 1 \le d_1,d_2,d_3 \le 6\}$ where $d_i$ correspond to $i^{th}$ dice. 

$\underline{\textbf{Case 1:}} \text{ }$ 

$\forall_{1 \le j,k,z \le 3} \ j\neq k \land  d_j=1 \land d_k=5 \land z \neq j \land z \neq k\Longrightarrow \forall_{2\le m\le 4} \ d_z = m$

In other way, we write it as $\underbrace{^3C_2}_{\text{selecting j, k}} \times \underbrace{2!}_{\text{arranging j,k}} \times \underbrace{^3C_1}_{\text{choosing }d_z} = 18$

And,

$\forall_{1 \le j,k,z \le 3} \ j\neq k \land  d_j=2 \land d_k=6 \land z \neq j \land z \neq k\Longrightarrow \forall_{3\le m\le 5} \ d_z = m$

In other way, we write it as $\underbrace{^3C_2}_{\text{selecting j, k}} \times \underbrace{2!}_{\text{arranging j,k}} \times \underbrace{^3C_1}_{\text{choosing }d_z} = 18$

$\underline{\textbf{Case 2:}}$

$\forall_{1 \le j,k,z \le 3} \ j\neq k \land  d_j=1 \land d_k=5 \land z \neq j \land z \neq k\Longrightarrow \forall_{m \in \{1,5\}} \ d_z = m$

In other way, we write it as $\dfrac{\underbrace{^3C_2}_{\text{selecting j, k}} \times \underbrace{2!}_{\text{arranging j,k}} \times \underbrace{^2C_1}_{\text{choosing }d_z}}{\underbrace{2!}_{\text{overcounting; e.g. (1,1,5) counted twice}}} = 6$

And, 

$\forall_{1 \le j,k,z \le 3} \ j\neq k \land  d_j=2 \land d_k=6 \land z \neq j \land z \neq k\Longrightarrow \forall_{m \in \{2,6\}} \ d_z = m$

In other way, we write it as $\dfrac{\underbrace{^3C_2}_{\text{selecting j, k}} \times \underbrace{2!}_{\text{arranging j,k}} \times \underbrace{^2C_1}_{\text{choosing }d_z}}{\underbrace{2!}_{\text{overcounting; e.g. (2,2,6) counted twice}}} = 6$

$\underline{\textbf{Total}}$

$\text{Favourable Cases} = 18+18+6+6 = 48$

$|S| = 6^3 = 216$

$\text{Probability} = \dfrac{48}{216} = \dfrac{2}{9}=0.\overline{2}$ 

–1 vote
–1 vote
1/9 C is answer .  there will be 24 such permutations having diff. of 4 in max. and min. in dies

24/216=1/9
Answer:

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true