in Quantitative Aptitude
812 views
2 votes
2 votes

If $\alpha$ is a root of $x^2-x+1$, then $\alpha^{2018} + \alpha^{-2018}$ is

  1. $-1$
  2. $0$
  3. $1$
  4. $2$
in Quantitative Aptitude
812 views

1 Answer

7 votes
7 votes
Best answer

$x^2-x+1=0$

$\Rightarrow x=\frac{1\pm\sqrt{3}i}{2}=-\omega,-\omega^2$

(Where $\omega$ is the cube root of unity)$

Product of roots $\alpha \beta=1$

$\implies \beta=\alpha^{-1}$

$\alpha^{2018}+\alpha^{-2018}=\alpha^{2018}+\beta^{2018}$

$=(-\omega)^{2018}+(-\omega^2)^{2018}$

$=(\omega^3)^{672}.\omega^2+(\omega^3)^{2*672}.\omega^4$

$=\omega^2+\omega^4$

$=\omega^2+ \omega$

$=-1$      (option A)

($\color{blue}{1+\omega+\omega^2=0\;  and \; \omega^3=1}$)


Cube root of unity--

$x^3=1$

$\Rightarrow x^3-1=0$

$\Rightarrow (x-1)(x^2+x+1)=0$

$\Rightarrow x=1,\frac{-1\mp\sqrt 3 i}{2}$

selected by
Answer:
Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true