in Quantitative Aptitude recategorized by
375 views
0 votes
0 votes

Let $p,q,r,s$ be real numbers such that $pr=2(q+s).$ Consider the equations $x^{2}+px+q=0$ and $x^{2}+rx+s=0.$ Then

  1. at least one of the equations has real roots.
  2. both these equations have real roots.
  3. neither of these equations have real roots.
  4. given data is not sufficient to arrive at any conclusion.
in Quantitative Aptitude recategorized by
by
375 views

1 Answer

1 vote
1 vote
$\underline{\mathbf{Answer: A}}$

$\underline{\mathbf{Explanation:}}$

The discriminant of the equation $\mathrm{x^2 + px + q = 0}$ is $\Delta_1 = \mathrm{p^2-4q}$

and discriminant of $\mathrm{x^2 = rx = s = 0}$ is given by $\Delta_2 = \mathrm{r^2 - 4s}$

Now, $\Delta_1 + \Delta_2 = \mathrm{p^2 - 4q + r^2 -4s = p^2 + r^2 -4(q+s)  = p^2 + r^2 -2pr = (p-r)^2} \;[\text{if}\;\mathrm{pr = 2(q+s)}]$

$\therefore \Delta_1 + \Delta_2 = \mathrm{(p-r)^2} \ge 0$

$\because$ Sum of these two $\mathbf{Discriminant}$ is $\mathbf{positive}$.

$\therefore $ At least one of them has to be $\mathbf{positive}$.

$\therefore$ At least one of the equations between $\mathrm{x^2+px+q  = 0}$ and $\mathrm{x^2 + rx + s = 0}$ must have real roots.

$\therefore \mathbf A$ is the correct option.
edited by
by

2 Comments

Here needs some corrections. $\Delta_1+\Delta_2=(p-r)^2$ not $(p+r)^2$

$p^2+r^2-4(q+s)=p^2+r^2-2\{2(q+r)\}=p^2+r^2-2pr=(p-r)^2$

1
1
Yes, thanks!
1
1

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true