in TIFR edited by
485 views
0 votes
0 votes

Consider the set of continuous functions $f:\left [ 0,1 \right ]\rightarrow \mathbb{R}$ that satisfy:

$$\int_{0}^{1}f\left ( x \right )\left ( 1-f\left ( x \right ) \right )dx=\frac{1}{4}.$$

Then the cardinality of this set is:

  1. $0$.
  2. $1$.
  3. $2$.
  4. more than $2$.
in TIFR edited by
485 views

1 Answer

0 votes
0 votes
$\int_{0}^{1}f(x)(1-f(x))\;dx = \frac{1}{4}$

$\int_{0}^{1}(f(x)-(f(x))^2)\;dx = \frac{1}{4}$

$\int_{0}^{1}-((f(x))^2 -f(x))\;dx = \frac{1}{4}$

$\int_{0}^{1}-\left ( \left ( f(x)-\frac{1}{2} \right )^2 -\frac{1}{4} \right )\;dx = \frac{1}{4}$

$\int_{0}^{1}\left ( - \left ( f(x)-\frac{1}{2} \right )^2 + \frac{1}{4} \right )\;dx = \frac{1}{4}$

$ \int_{0}^{1} - \left ( f(x)-\frac{1}{2} \right )^2 \; dx + \int_{0}^{1} \frac{1}{4} \; dx = \frac{1}{4}$

$ \int_{0}^{1} - \left ( f(x)-\frac{1}{2} \right )^2 \; dx + \frac{1}{4} = \frac{1}{4}$

$ \int_{0}^{1} - \left ( f(x)-\frac{1}{2} \right )^2 \; dx = 0$

$\text{It means $- \left ( f(x)-\frac{1}{2} \right )^2 =0 \Rightarrow f(x)= \frac{1}{2}$}$

$\text{So, cardinality of the set is $1$}$
Answer:

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true

64.3k questions

77.9k answers

244k comments

80.0k users