in TIFR edited by
306 views
0 votes
0 votes

True/False Question :

The matrices 

$$\begin{pmatrix} x &0 \\ 0 & y \end{pmatrix} and \begin{pmatrix} x &1 \\ 0 & y \end{pmatrix}, x\neq y,$$

for any $x,y \in \mathbb{R}$ are conjugate in $M_{2}\left ( \mathbb{R} \right )$ .

in TIFR edited by
306 views

1 Answer

1 vote
1 vote
Best answer
$\text{ if we can write 2 matrices A and B as $A=M^{-1}BM$ for some invertible matrix M}$

$\text{then they are called conjugate.}$

$\text{Consider, 2 matrices A and B as :}$

$\text{$A= \begin{pmatrix} x &0 \\ 0&y \end{pmatrix}$ and $B= \begin{pmatrix} x &1 \\ 0&y \end{pmatrix}$}$

$\text{Since, for matrix B, eigenvalues are x and y where $x \neq y $ (distinct eigen values)}$

$\text{So, matrix B is diagonalizable.}$

$\text{It means I can write B as $B=PDP^{-1}$, where matrix P is made of eigen vectors and}$

$\text{matrix D is made of eigen values which are in the diagonal }$

$\text{Eigen vectors of B are $\begin{pmatrix} 1\\0 \end{pmatrix}$ for eigen value x}$

$\text{and $\begin{pmatrix} \frac{-1}{x-y}\\1 \end{pmatrix}$ for eigen value y}$

$\text{So, matrix $P=\begin{pmatrix} 1 &\frac{-1}{x-y} \\ 0&1 \end{pmatrix}$ and $D=\begin{pmatrix} x &0 \\ 0&y \end{pmatrix}$}$

$\text{So, I can write $B=PDP^{-1}$}$

$\text{Here, matrix D is same as matrix A}$

$\text{So, $B=PAP^{-1}$}$

$\text{So, $BP=PA$}$

$\text{So, $P^{-1}BP=A$}$

$\text{Hence, matrices A and B are conjugate.}$
selected by
Answer:

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true

64.3k questions

77.9k answers

244k comments

80.0k users