in Mathematical Logic edited by
8,990 views
30 votes
30 votes

Consider two well-formed formulas in propositional logic

$F_1: P \Rightarrow \neg P$          $F_2: (P \Rightarrow \neg P) \lor ( \neg P \Rightarrow P)$

Which one of the following statements is correct?

  1. $F_1$ is satisfiable, $F_2$ is valid
  2. $F_1$ unsatisfiable, $F_2$ is satisfiable
  3. $F_1$ is unsatisfiable, $F_2$ is valid
  4. $F_1$ and $F_2$ are both satisfiable
in Mathematical Logic edited by
9.0k views

4 Comments

If this question would be MSQ, then option A) and D), both are correct.
4
4
I too think of the same think because a tautology is also satisfiable.. can any one correct me if i am wrong … My reasoning is the satisfiable wants at least one input combination for which the output is true ..  and tautology give output true for all input combination of inputs ..
1
1
Well we can solve this easily by the case method or by the boolean algebra
0
0

5 Answers

37 votes
37 votes
Best answer

$F1: P\to \neg P$

    $=\neg P\vee \neg P$

    $=\neg P.$      can be true when P is false ( Atleast one T hence satisfiable)

$F2:  (P\to \neg P)\vee (\neg P\to P)$

     $=\neg P \vee (P\vee P)$

     $=\neg P \vee P$

     $=T.$

VALID

Option (A)

edited by

4 Comments

Arjun Sir, there's some typo here in F1 

=¬P¬P 

it should be -P v –P 

1
1

can we say if  Contingency then we can say it is satisfiable?

Bcoz contingency can also be happen if it’s not satisfiable.

Please verify.

 

As i learn SATISFIABLE == Tautology

and NOT SATISFIABLE == Contradiction

can we include a contingency in both scenario?

0
0

@princeit07 yes i think so because in contingency having sometimes true & sometime false then it is neither tautology nor contradiction.

0
0
5 votes
5 votes

"A valid (true for every set of values)  formula is always satisfiable (true for at least one value)  , but a satisfiable formula may or may not be valid".

as F1 is not valid but satisfiable,

and F2 is valid(which implicitly means is satisfiable too).

therefore OPTION A is the complete solution, but OPTION D is not. 

1 vote
1 vote

Given:

$F_1: P → \sim P$

$F_2: (P → \sim P) \vee (\sim P → P) $

 

Lets find out by case method for each of the above equation.

$F_1: P → \sim P$

Case 1: $P=True$ Case 2: $P=False$

 

$F_1: True → \sim True$

$F_1: True → False$

$F_1: False$

 

$F_1: False→ \sim False$

$F_1: False → True$

$F_1: True$

 

We observe that $F_1$ is both $True$ and $False$ depending upon the input value. This is the property of Satisfiability.

Therefore $F_1$ is Satisfiable.

 

$F_2: (P →\sim P) \vee (\sim P → P) $

Case 1: $P=True$ Case 2: $P=False$

 

$F_2: (True → \sim True) \vee (\sim True → True)$

$F_2: (True → False) \vee (False → True)$

$F_2: False \vee True$

$F_2: True$

 

$F_2: (False → \sim False) \vee (\sim False → False)$

$F_2: (False → True) \vee (True → False)$

$F_2: True \vee False$

$F_2: True$

 

We observe that $F_2$ is $True$ for both the cases. It doesn’t depends upon the input. This is the property of Tautology.

Therefore $F_2$ is Valid $(Valid \equiv Tautology)$.

 

Answer is (A).

1 vote
1 vote

 

😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊😊

Answer:

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true