in Mathematical Logic edited by
505 views
2 votes
2 votes

Let $A, B, C$ be three subsets of $\mathbb{R}$. The negation of the following statement For every $\epsilon  > 1$, there exists $a \in A$ and $b \in B$ such that for all $c \in C, |a − c| < \epsilon$ and $|b − c| > \epsilon$ is 

  1. There exists $\epsilon \leq 1$, such that for all $a \in A$ and $b \in B$ there exists $c \in C$ such that $|a − c| \geq \epsilon$ or $|b − c| \leq \epsilon$
  2. There exists $\epsilon \leq 1$, such that for all $a \in A$ and $b \in B$ there exists $c \in C$ such that $|a − c| \geq \epsilon$ and $|b − c| \leq \epsilon$
  3. There exists $\epsilon  > 1$, such that for all $a \in A$ and $b \in B$ there exists $c \in C$ such that $|a − c| \geq \epsilon$ and $|b − c| \leq \epsilon$ 
  4. There exists $\epsilon > 1$, such that for all $a \in A$ and $b \in B$ there exists $c \in C$ such that $|a − c| \geq \epsilon$ or $|b − c| \leq \epsilon$ 
in Mathematical Logic edited by
505 views

1 Answer

0 votes
0 votes
c will be the answer
Answer:

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true