in Mathematical Logic retagged by
17,026 views
42 votes
42 votes

Which one of the following predicate formulae is NOT logically valid?

Note that $W$ is a predicate formula without any free occurrence of $x$.

  1. $\forall x (p(x) \vee W) \equiv \forall x \: ( px) \vee W$
  2. $\exists x(p(x) \wedge W) \equiv \exists x \: p(x) \wedge W$
  3. $\forall x(p(x) \rightarrow W) \equiv \forall x \: p(x) \rightarrow W$
  4. $\exists x(p(x) \rightarrow W) \equiv \forall x \:  p(x) \rightarrow W$
in Mathematical Logic retagged by
by
17.0k views

4 Comments

@Suraj Reddy, For null quantification rules, $W$ can have free variables in it, but $W$ should not have a free variable $x.$ The same proof will work, but one statement we will have to add (or implicitly keep in the back of our mind) before the proof is “for any value-assignment to all the free variables of $W$, either $W$ will be True or $W$ will be false”. 

If $W$ has some free variable(s), say $y$, then LHS & RHS both will be Predicates over variable $y$, not propositions, But that is fine because we only find equivalence of LHS & RHS.  

See THIS example. See THIS also. 

1
1

@Deepak Poonia So, either $W$ is a quantified predicate formula, or $W$ has some other free variable y but not x where we can think(of the option A) as $\exists y \forall x(p(x)\vee W)  \equiv \exists y (\forall xp(x)\vee W)$. Just finding equivalence between predicates doesn’t make sense.

0
0

@Suraj Reddy, I think the usefulness of predicate-equivalence comes during inference of one statement from a set of given statements. More about the usefulness of equivalence of predicates I will need to check. But the concept is what I have mentioned in the previous comments & in this lecture. 

1
1

8 Answers

2 votes
2 votes

To solve such questions consider domain to be (x1,x2)

keep in mind these two rules :

  1. ∀x is “ANDing” of all values in the domain because ∀x is only true if predicate is true for all the values of domain
  2. ∃x is “ORing” of all values in the domain because ∃x  is true if predicate is true for atleast 1 value of the domain

 

Option                       L.H.S                R.H.S L.H.S==R.H.S
A

∀x(p(x)∨W)

(p(x1)∨W)^(p(x2)∨W)

=(p1+w)(p2+w)

=p1p2+p1w+p2w+w

=p1p2+w(p1+p2+1)

=p1p2+w


∀x(px)∨W

=(p(x1)^p(x2))∨W

= p1p2+w

                  True
B

∃x(p(x)∧W)

=p1w+p2w

=w(p1+p2)


∃xp(x)∧W

=(p1+p2)w

             

True

C

∀x(p(x)→W)

=(p1→W)p2(→w)

=(p1’+w)(p2’+w)

=p1’p2’+p1’w+p2’w+w

=p1’p2’+w(p1’+p2’+1)

=p1’p2’+w

∀xp(x)→W

=(p1p2→w)

=(p1p2)’+w

=p1’+p2’+w

False
D

∃x(p(x)→W)

=(p1→W)+(p2→W)

=p1’+w+p2’+w

=p1’+p2’+w


∀xp(x)→W

=p1p2→W

=(p1p2)’+w

=p1’+p2’+w

 

True

So in only option C L.H.S !=R.H.S

Answer (C)

by
0 votes
0 votes

Option C is logically invalid. Hence option C is correct

0 votes
0 votes

Let domain of $x = \{x_1, x_2\}$

Option A:

$[\forall x (P(x) \lor W) \equiv \forall x P(x) \lor W]$

$LHS: \forall x (P(x) \lor W) =(P(x_1) + W) * (P(x_2) + W) =P(x_1)P(x_2) + W$

$ RHS: \forall x P(x) \lor W = P(x_1)*P(x_2) + W$

$\therefore LHS \equiv RHS$

 

Option B:

$[\exists x (P(x) \land W) \equiv \exists x P(x) \land W ]$

$LHS: \exists x (P(x) \land W) = (P(x_1).W)+(P(x_2).W) = \{P(x_1)+P(x_2)\}*W$

$RHS: \exists x P(x) \land W = \{P(x_1) + P(x_2)\} * W$

$\therefore LHS \equiv RHS$

 

Option C:

$[\forall x (P(x) \rightarrow W) \equiv \forall x P(x) \rightarrow W]$

$LHS: \forall x (P(x) \rightarrow W) = \{(P(x_1) \rightarrow W)*(P(x_2) \rightarrow W)\} = (P’(x_1) + W)(P’(x_2) + W) = P’(x_1)P’(x_2) + W$

$RHS: \forall x P(x) \rightarrow W = (P(x_1)P(x_2)) \rightarrow W = (P(x_1)P(x_2)’ + W = P’(x_1) + P’(x_2) + W$

$\therefore LHS \not \equiv RHS$

 

Option D:

$[\exists x (P(x) \rightarrow W) \equiv \forall x P(x) \rightarrow W]$

$LHS: \exists x (P(x) \rightarrow W) = \{(P(x_1) \rightarrow W) + (P(x_2) \rightarrow W)\} = P’(x_1) + W + P’(x_2) + W = P’(x_1) + P’(x_2) + W$

$RHS: \forall x P(x) \rightarrow W = (P(x_1)*P(x_2)) \rightarrow W = (P(x_1)P(x_2))’ + W =  P’(x_1) + P’(x_2) + W$

$\therefore LHS \equiv RHS$

1 comment

Required Information:

FOL conversion to Propositional Form

$\forall xP(x) \equiv \{P(x_1) \land P(x_2) \land … \}, x_i \in \text{domain(}x)$

i.e., the conjunction of all propositions

 

$\exists xP(x) \equiv \{P(x_1) \lor P(x_2) \lor … \}, x_i \in \text{domain(}x)$

i.e., the disjunction of all propositions

0
0
0 votes
0 votes

option C correct 

Answer:

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true