in Set Theory & Algebra edited by
1,780 views
2 votes
2 votes
Let $Z_{n}$ be the group of integers $\{0,1,2, \ldots, n-1\}$ with addition modulo $n$ as the group operation. The number of elements in the group $Z_{2} \times Z_{3} \times Z_{4}$ that are their own inverses is ___________.
in Set Theory & Algebra edited by
by
1.8k views

1 comment

Video Solution: Zn Group - GATE CSE 2024 

1
1

2 Answers

1 vote
1 vote

Here, first understand the problem.

   

$\mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_4=\{(a,b,c) \ | \ a \in \{0,1\},b \in \{0,1,2\},c \in \{0,1,2,3\} \}$

   

So, $\mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_4$ is a set of triplets in which first element comes from the set

$\{0,1\},$ second element comes from the set $\{0,1,2\}$ and third element comes from the set $\{0,1,2,3\}$.

   

It forms a group say $G$ under the operation say $\oplus$

such that: 

  

$(a_1,b_1,c_1) \oplus (a_2,b_2,c_2) = (a_1 \oplus_2 a_2,b_1 \oplus_3 b_2,c_1 \oplus_4 c_2)$

Where $x \oplus_m y=(x+y) \ mod \ m$

    

Now, here, $x=x^{-1}$ means $x^2=e$ where $x$ and identity element $e$ belong to group $G$.

So, here we need to find the number of elements $x$ of $G$ such $x \oplus x = e$.

Now, for the group $G,$ the unique identity element $e=(0,0,0)$ 

because $(a,b,c) \oplus (0,0,0)=(a \oplus_2 0, b \oplus_3 0, c \oplus_3 0)=(a,b,c)$

   

Now, to find $x$ such that $x \oplus x = e$ i.e.

   

$(x_1,y_1,z_1) \oplus (x_1,y_1,z_1)= (x_1 \oplus_2 x_1,x_2 \oplus_3 x_2,x_3 \oplus_4 x_3)=(0,0,0)$

    

$(1)$ For $x_1$ we have $2$ choices that is $0$ and $1$ because $0 \oplus_2 0 =0$ and $1 \oplus_2 1 =0$ 

   

$(2)$ For $x_2$ we have $1$ choice that is $0$

because $0 \oplus_3 0 =0$ and for $x_2=1,2$

   

 $1 \oplus_3 1 \neq 0$ and $2 \oplus_3 2 \neq 0$

   

$(3)$ For $x_3$ we have $2$ choices that is $0$  and $2$ 

because $0 \oplus_4 0 =0$ and $2 \oplus_4 2 =0$ for $x_2=1,3$ 

    

$1 \oplus_4 1 \neq 0$ and $3 \oplus_4 3 \neq 0$

   

Hence, for $x_1$ we have $2$ choices, for $x_2$ we have $1$ choice and for $x_3$ we have $2$ choices.

So, total choices such that $x^2=e$ is $4$.

  

Hence, Answer: 4

   

$\textbf{Brute Force}$

$\mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_4=$

$\{(0,0,0),(0,1,0),(0,2,0),(1,0,0),(1,1,0),(1,2,0),(0,0,1),(0,1,1),(0,2,1),(1,0,1),(1,1,1),$

$(1,2,1),(0,0,2),(0,1,2),(0,2,2),(1,0,2),(1,1,2),(1,2,2),(0,0,3),(0,1,3),(0,2,3),(1,0,3),(1,1,3),(1,2,3)\}$

   

Now, take each element from this set and check whether $x^2=e$ or not.

  

For example, $(0,0,0) \oplus (0,0,0) = (0 \oplus_2 0,0 \oplus_3 0,0 \oplus_4 0)=(0,0,0)$ here it is valid and similarly  $(0,1,0) \oplus (0,1,0) = (0 \oplus_2 0,1 \oplus_3 1,0 \oplus_4 0)=(0,2,0) \neq (0,0,0)$ hence it is invalid.

   

When you do for all the $24$ elements of this set, you will get the valid elements as $(0,0,0),(1,0,0),(0,0,2)$ and $(1,0,2)$

  

Because

 

(i) $(0,0,0) \oplus (0,0,0) = (0 \oplus_2 0,0 \oplus_3 0,0 \oplus_4 0)=(0,0,0)$

  

(ii) $(1,0,0) \oplus (1,0,0) = (1 \oplus_2 1,0 \oplus_3 0,0 \oplus_4 0)=(0,0,0)$

  

(iii) $(0,0,2) \oplus (0,0,2) = (0 \oplus_2 0,0 \oplus_3 0,2 \oplus_4 2)=(0,0,0)$

   

(iv) $(1,0,2) \oplus (1,0,2) = (1 \oplus_2 1,0 \oplus_3 0,2 \oplus_4 2)=(0,0,0)$

0 votes
0 votes

Checkout

Answer:

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true