in Calculus edited by
1,999 views
4 votes
4 votes

​​​​​Let $f(x)$ be a continuous function from $\mathbb{R}$ to $\mathbb{R}$ such that

\[
f(x)=1-f(2-x)
\]
Which one of the following options is the CORRECT value of $\int_{0}^{2} f(x) d x$ ?

  1. $0$
  2. $1$
  3. $2$
  4. $-1$
in Calculus edited by
by
2.0k views

1 Answer

2 votes
2 votes

$ \underline{\text{Given:}}\ \ \ f(x) = 1 - f(2-x) \qquad \to (1) $

$ \underline{\text{To find:}}\ \ \int_{0}^{2} f(x) \,dx  $

$ \underline{\large \text{Method 1:}} $

Notice that the continuous function $f(x) = 1/2$ from $\mathbb{R}$ to $\mathbb{R}$ satisfies eqn. $(1)$

So, let $f(x) = 1/2$.

Now,

$
\begin{align*}
\large \int_{0}^{2} f(x) \,dx  &= \large \int_{0}^{2} \tfrac{1}{2} \cdot \,dx = \large \tfrac{x}{2}\Big|_0^2 = 1 \\
\end{align*}
$

$\bf \therefore Ans = B.$


$ \underline{\large \text{A more formal method:}} $

Let $u=a-x$, we have $du=-dx$, then

$
\begin{align*}
\large \int_{0}^{a}f(a-x)dx &= \large \int_{u=a}^{u=0}-f(u)du = \large -\int_a^0f(u)du = \large \int_0^af(u)du
\end{align*}
$

So, $ \large  \int_{0}^{a} f(a-x) \,dx = \int_{0}^{a} f(u) \,dx = \int_{0}^{a} f(x) \,dx. \qquad \small \text{(} \because \text{variable of integration is a dummy variable)}$

Now,

$
\begin{align*}
\large \int_{0}^{2} f(x) \,dx &= \large \int_{0}^{2} f(2-x) \,dx = \large \int_{0}^{2} 1-f(x) \,dx = \large 2 - \int_{0}^{2} f(x) \,dx \\
\large 2 \cdot \int_{0}^{2} f(x) \,dx &= \large 2 \\
\large \int_{0}^{2} f(x) \,dx &= \large 1 \\
\blacksquare \\
\end{align*}

edited by
Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true