in Digital Logic retagged by
14,999 views
70 votes
70 votes

Given two three bit numbers $a_{2}a_{1}a_{0}$ and $b_{2}b_{1}b_{0}$ and $c$ the carry in, the function that represents the carry generate function when these two numbers are added is: 

  1. $a_{2}b_{2}+a_{2}a_{1}b_{1}+a_{2}a_{1}a_{0}b_{0}+a_{2}a_{0}b_{1}b_{0}+a_{1}b_{2}b_{1}+a_{1}a_{0}b_{2}b_{0}+a_{0}b_{2}b_{1}b_{0}$
  2. $a_{2}b_{2}+a_{2}b_{1}b_{0}+a_{2}a_{1}b_{1}b_{0}+a_{1}a_{0}b_{2}b_{1}+a_{1}a_{0}b_{2}+a_{1}a_{0}b_{2}b_{0}+a_{2}a_{0}b_{1}b_{0}$
  3. $a_{2}+b_{2}+(a_{2}\oplus b_{2}) ( a_{1}+b_{1}+(a_{1}\oplus b_{1})+(a_{0}+b_{0}))$
  4. $a_{2}b_{2}+\overline{a_{2}}a_{1}b_{1}+\overline{a_{2}a_{1}}a_{0}b_{0}+\overline{a_{2}}a_{0}\overline{b_{1}}b_{0}+a_{1}\overline{b_{2}}b_{1}+\overline{a_{1}}a_{0}\overline{b_{2}}b_{0}+a_{0}\overline{b_{2}b_{1}}b_{0}$
in Digital Logic retagged by
15.0k views

1 comment

edited by

Remark:

$C_i=a_{i-1}b_{i-1} + \left(a_{i-1} \oplus b_{i-1} \right) C_{i-1}$ $,$  $i\geqslant1$  is equivalent to

$C_i=a_{i-1}b_{i-1} + \left(a_{i-1} + b_{i-1} \right) C_{i-1}$


To prove above equation, let’s take an example

For simplicity assume $C_1 = c_1$

Let $f(a_1,b_1,c_ 1)=a_1b_1 + \left(a_1 \oplus b_1 \right) c_ 1$

$\Rightarrow$ $f(a_1,b_1,c_ 1)=a_1b_1 + \overline {a_1}b_1c_1 + a_1\overline{b_1}c_1\\$

$\Rightarrow$ $f(a_1,b_1,c_ 1)=a_1b_1\overline{c_1} + a_1b_1c_1 + \overline {a_1}b_1c_1 + a_1\overline{b_1}c_1\\$

$\Rightarrow f(a_1,b_1,c_ 1)= \sum (3,5,6,7)$

After solving using K-Map you get $f=a_1b_1 + b_1c_1 + a_1c_1$

5
5

6 Answers

77 votes
77 votes
Best answer

$c_1=a_0 b_0$

$c_2 = a_1b_1 + a_1c_1 + b_1c_1$

$c_3=a_2b_2 + a_2c_2 + b_2c_2$
$\quad=a_2b_2 + a_2a_1b_1 + a_2a_1c_1 +a_2b_1c_1 + b_2a_1b_1 +b_2a_1c_1 + b_2b_1c_1$
$\quad= a_2b_2 + a_2a_1b_1 +a_2a_1a_0b_0 + a_2b_1a_0b_0 + b_2a_1b_1 + b_2a_1a_0b_0 +b_2b_1a_0b_0$

Option is A.

Considering the carry in function $c$, $c_1 = a_0b_0 + a_0c + b_0c$, but $c$ is missing in all options and hence ignored.

edited by
by

4 Comments

how c1 = a0b0 ...rather  it should be c1 = G0 + P0C0
0
0
edited by

$a_1b_1 + \left(a_1 \oplus b_1 \right) c_ 1$

$= a_1b_1 + \overline {a_1}b_1c_1 + a_1\overline{b_1}c_1\\$

$=a_1b_1 + b_1c_1 + a_1c_1$

To solve above boolean expression use K-Map method.

Let $f(a_1,b_1,c_ 1)=a_1b_1 + \left(a_1 \oplus b_1 \right) c_ 1$

$\Rightarrow$ $f(a_1,b_1,c_ 1)=a_1b_1 + \overline {a_1}b_1c_1 + a_1\overline{b_1}c_1\\$

$\Rightarrow$ $f(a_1,b_1,c_ 1)=a_1b_1\overline{c_1} + a_1b_1c_1 + \overline {a_1}b_1c_1 + a_1\overline{b_1}c_1\\$

$\Rightarrow f(a_1,b_1,c_ 1)= \sum (3,5,6,7)$

After solving you get $f=a_1b_1 + b_1c_1 + a_1c_1$

3
3
It is not the case that: Co is missing in all options and hence ignored. Co=0 that’s why it’s not written.
0
0
44 votes
44 votes

(A) is correct option!

4 Comments

That simplification is bit tricky, instead we could also take

Ci = aibi + (ai + bi)ci-1

Here both + and ⊕ will work!

7
7

How did you simplify c3 = a2b2+ (a2 xor b2)c2 TO c3 = a2b2 + a2c2 + b2c2 ?

 

0
0
He has shown the steps in c2. Use similar pattern.
0
0
edited by

@vishal

$C_i=a_ib_i + \left(a_i + b_i \right) C_{i-1}$

I think above equation is wrong.

Correct one is

$C_i=a_{i-1}b_{i-1} + \left(a_{i-1} \oplus b_{i-1} \right) C_{i-1}$ $,$  $i\geqslant1$ is equivalent to

$C_i=a_{i-1}b_{i-1} + \left(a_{i-1} + b_{i-1} \right) C_{i-1}$

0
0
21 votes
21 votes

First we have to know how carry can be generated.

1) If we add 2-bits carry can only be generated if both digits are 1.

so c=a0b0


2) If we add two 2-bit numbers then carry can be generated in two cases ,

a)MSB of both number is 1 

b)One MSB is 0 and Other one is 1 and both a0 and b0 are =1

so C=a1b1 + (a1+b1)a0b0


3) If we add two 3-bit numbers then carry can be generated in 3 cases ,

a) MSB of both numbers is = 1

b) MSB of one of the digit is 1 and a1 and b1 both are 1.

c) MSB of one of the digit is 1 and other MSB=0 and one of a1 , b1 is 1 and other 0 but LSB of both digit must be 1

so C= a2b2 + (a2+b2)a1b1 + (a2+b2)(a1+b1)a0b0  

5 votes
5 votes

Check reason

3 Comments

i learned the formula
C(i)=G(i)+P(i)C(i-1)
–1
–1
cn ny talk about thiz reference
0
0

@Wanted

it should be , $C_{i+1} = G_{i} + P_{i}C_{i}$

 $Gi = AiBi$  and  $Pi = Ai \bigotimes Bi$ ,  substitute.

0
0
Answer:

Related questions